...
...
The ‘Green Cloud’: Four strategies for a sustainable and responsible digital...

...

The ‘Green Cloud’: Four strategies for a sustainable and responsible digital...

Posted | Updated by Insights team:

Publication | Update:

Mar 2024
...

Digital screen with cloud computing and abstract glowing circular background. Security and protection data cloud. Big data safe. Database storage, 3d render.
Image: @ JuSun | iStock

As a cloud service provider, Firstserv Ltd takes its responsibilities towards the environment seriously and is committed to reducing its carbon footprint, pursuing green hosting policies and, in turn, helping customers to be greener themselves

‘Green Cloud’ refers to a sustainable way of cloud computing. It reduces energy demand and saves money while keeping an eye on environmental issues at the same time. Moving traditional IT infrastructure to the cloud is beneficial for the environment in several ways; primarily, it reduces the number of physical servers and increases the average utilisation of available computing units. If cloud providers do it right, a measurable impact on a company’s CO2 footprint can be achieved.

Recently, ‘Green Cloud’ has become a buzzword as more companies consider the CO2 emissions and the overall carbon footprint of their new cloud service providers’ facilities. Respectively, sustainability and responsibility are becoming the main points of differentiation in the marketplace for global hyperscales like AWS, Google Cloud or Microsoft Azure and European cloud companies like OVH.

Strategies for a sustainable and responsible digital future

Firstserv Ltd is putting all its efforts into ensuring its services are as environmentally friendly as possible. The climate crisis and rising energy costs demand future-proofing of the support given to their customers. Improving efficiency is a major step towards a sustainable cloud, particularly regarding physical data centres. Sebastian Tyc, CEO of Firstserv Ltd, outlines the four most effective strategies for creating a sustainable and responsible future of greener cloud services.

1. Be strategic about data centre locations

The operation of a data centre requires loads of energy. While most of this energy is needed to power the servers, a large part also goes into cooling them to protect the equipment. If data centre locations are picked strategically, their power demand can be substantially reduced. For example, data centres in cool regions such as Scandinavia or underground facilities need much less cooling than in desert or subtropical areas like the Southern US.

2. Increase energy efficiency and renewable resources

The main concept behind cloud computing is that services are shared over a network, optimising the resources’ effectiveness. For example, a cloud facility that serves Sydney users during Sydney business hours with a specific service (e.g., a web server) could relocate the same resources to serve European users during European business hours with a different application.

As such, cloud services operate more efficiently than on-premises data centres. It is precisely because of the efficient utilisation of IT resources that cloud computing positively impacts the environment. As data-intensive technologies such as Artificial Intelligence (AI) and distributed manufacturing systems surge, cloud computing centres must remain energy efficient.

In this regard, modern data centres increasingly use advanced technologies to eliminate wastage at every level of their operations. For example, most of today’s data centres use machine learning to maximise cooling their environments automatically. Besides machine learning, data centres also deploy smart temperature, lighting, and cooling controls to minimise energy use in their environments.

Firstserv Ltd data centres employ renewable energy sources such as geothermal, solar, wind or water-cooling technology. They introduce liquid cooling for processors to minimise their overall carbon footprint. It is also important to ensure that your infrastructure is suitable for hosting your application environment.

3. Use virtualisation for sustainability and cost energy-efficient hardware

Even though cost savings and increased efficiency in business operations are the top drivers of virtualisation, they are not the only benefits. Cloud computing also uses virtualisation to contribute positively to environmental sustainability.

Virtualisation allows an organisation to create several virtual machines (VMs) and run multiple applications on the same physical server via a hypervisor. As such, high-carbon physical machines get replaced with their virtual equivalents.

For example, an organisation could use a single VM rather than a resource-heavy physical server to stream videos. This could help the company to minimise power consumption and the overall carbon footprint. Shifting an on-premises IT infrastructure to the cloud means you use fewer servers, and this type uses less power, potentially having a lower impact on the environment.

To reduce the overall need for energy in data centres, cloud providers strive to use optimised and modern hardware and software infrastructure. This is not limited to changing old light bulbs to energy-saving lights! Data centres employ energy-saving strategies such as dynamic voltage and frequency scaling (DVFS) or shifting to modern data storage devices. Solid state drives (SSDs) need less power, faster access to data, and last longer than their legacy technology, HDDs. Using optimised hardware, data centres become more efficient and minimise energy demand.

4. Streamline usage

Firstserv Ltd uses multiple strategies to optimise IT workflows at every level. This might include shifting workloads to different times, modifying applications to reduce network traffic, optimising storage and server caches, automating routine tasks or taking other steps to reduce energy usage.

It is also important to ensure that your infrastructure is suitable for hosting your application environment. Firstserv Ltd offers a wide range of options: Hosted Private Cloud, Public Cloud, and a variety of Bare Metal servers. With several Bare Metal options and models available, Firstserv Ltd partners can precisely adjust their ratios (RAM per core ratio, storage per RAM or core, etc.) and ensure they use the best virtual machine for every workload.

...

Please Note: This is a Commercial Profile

More About Stakeholder

Contributor Profile

Managing Director
Firstserv Ltd
Phone:+44 (0)203 053 9704
Website: Visit Website

...
Framed Content Aggregator - Publisher | Sponsor
...
OPEN ACCESS GOVERNMENT

Open Access Government is a digital publication that provides an in-depth perspective on key public policy areas from all around the world, including health and social care, research and innovation, technology, blockchain innovation, government, environment and energy. https://www.openaccessgovernment.org/

SKU code : 85C5FD47-3049-EADD-B26B-0FCD75B728E1
Delivery Format:
HTML ...

Immediate Delivery
...Access Rights | Content Availability:
...

...

The content of this subscriber knowledge library area, the technology platform and tools are provided for information purposes only. No legal liability or other responsibility is accepted for any errors, omissions, or any loss, damage or inconvenience caused as a result of reliance on such information, or statements on this site, or any site to which these pages connect, since we cannot control the content or take responsibility for pages maintained by external providers. Where we provide links to sites, we do not by doing so endorse any information or opinions appearing in them. This courseware includes resources copyrighted and open educational resources (OER) by multiple individuals and organizations. If someone else is given access to your account login information, that person has read, understands and accepts the Conditions of Use for this platform.

...

Objectives and Study Scope

This study has assimilated knowledge and insight from business and subject-matter experts, and from a broad spectrum of market initiatives. Building on this research, the objectives of this market research report is to provide actionable intelligence on opportunities alongside the market size of various segments, as well as fact-based information on key factors influencing the market- growth drivers, industry-specific challenges and other critical issues in terms of detailed analysis and impact.

The report in its entirety provides a comprehensive overview of the current global condition, as well as notable opportunities and challenges. The analysis reflects market size, latest trends, growth drivers, threats, opportunities, as well as key market segments. The study addresses market dynamics in several geographic segments along with market analysis for the current market environment and future scenario over the forecast period. The report also segments the market into various categories based on the product, end user, application, type, and region.
The report also studies various growth drivers and restraints impacting the  market, plus a comprehensive market and vendor landscape in addition to a SWOT analysis of the key players.  This analysis also examines the competitive landscape within each market. Market factors are assessed by examining barriers to entry and market opportunities. Strategies adopted by key players including recent developments, new product launches, merger and acquisitions, and other insightful updates are provided.

Research Process & Methodology

...

We leverage extensive primary research, our contact database, knowledge of companies and industry relationships, patent and academic journal searches, and Institutes and University associate links to frame a strong visibility in the markets and technologies we cover.

We draw on available data sources and methods to profile developments. We use computerised data mining methods and analytical techniques, including cluster and regression modelling, to identify patterns from publicly available online information on enterprise web sites.
Historical, qualitative and quantitative information is obtained principally from confidential and proprietary sources, professional network, annual reports, investor relationship presentations, and expert interviews, about key factors, such as recent trends in industry performance and identify factors underlying those trends - drivers, restraints, opportunities, and challenges influencing the growth of the market, for both, the supply and demand sides.
In addition to our own desk research, various secondary sources, such as Hoovers, Dun & Bradstreet, Bloomberg BusinessWeek, Statista, are referred to identify key players in the industry, supply chain and market size, percentage shares, splits, and breakdowns into segments and subsegments with respect to individual growth trends, prospects, and contribution to the total market.

Research Portfolio Sources:

  • BBC Monitoring

  • BMI Research: Company Reports, Industry Reports, Special Reports, Industry Forecast Scenario

  • CIMB: Company Reports, Daily Market News, Economic Reports, Industry Reports, Strategy Reports, and Yearbooks

  • Dun & Bradstreet: Country Reports, Country Riskline Reports, Economic Indicators 5yr Forecast, and Industry Reports

  • EMIS: EMIS Insight and EMIS Dealwatch

  • Enerdata: Energy Data Set, Energy Market Report, Energy Prices, LNG Trade Data and World Refineries Data

  • Euromoney: China Law and Practice, Emerging Markets, International Tax Review, Latin Finance, Managing Intellectual Property, Petroleum Economist, Project Finance, and Euromoney Magazine

  • Euromonitor International: Industry Capsules, Local Company Profiles, Sector Capsules

  • Fitch Ratings: Criteria Reports, Outlook Report, Presale Report, Press Releases, Special Reports, Transition Default Study Report

  • FocusEconomics: Consensus Forecast Country Reports

  • Ken Research: Industry Reports, Regional Industry Reports and Global Industry Reports

  • MarketLine: Company Profiles and Industry Profiles

  • OECD: Economic Outlook, Economic Surveys, Energy Prices and Taxes, Main Economic Indicators, Main Science and Technology Indicators, National Accounts, Quarterly International Trade Statistics

  • Oxford Economics: Global Industry Forecasts, Country Economic Forecasts, Industry Forecast Data, and Monthly Industry Briefings

  • Progressive Digital Media: Industry Snapshots, News, Company Profiles, Energy Business Review

  • Project Syndicate: News Commentary

  • Technavio: Global Market Assessment Reports, Regional Market Assessment Reports, and Market Assessment Country Reports

  • The Economist Intelligence Unit: Country Summaries, Industry Briefings, Industry Reports and Industry Statistics

Global Business Reviews, Research Papers, Commentary & Strategy Reports

  • World Bank

  • World Trade Organization

  • The Financial Times

  • The Wall Street Journal

  • The Wall Street Transcript

  • Bloomberg

  • Standard & Poor’s Industry Surveys

  • Thomson Research

  • Thomson Street Events

  • Reuter 3000 Xtra

  • OneSource Business

  • Hoover’s

  • MGI

  • LSE

  • MIT

  • ERA

  • BBVA

  • IDC

  • IdExec

  • Moody’s

  • Factiva

  • Forrester Research

  • Computer Economics

  • Voice and Data

  • SIA / SSIR

  • Kiplinger Forecasts

  • Dialog PRO

  • LexisNexis

  • ISI Emerging Markets

  • McKinsey

  • Deloitte

  • Oliver Wyman

  • Faulkner Information Services

  • Accenture

  • Ipsos

  • Mintel

  • Statista

  • Bureau van Dijk’s Amadeus

  • EY

  • PwC

  • Berg Insight

  • ABI research

  • Pyramid Research

  • Gartner Group

  • Juniper Research

  • MarketsandMarkets

  • GSA

  • Frost and Sullivan Analysis

  • McKinsey Global Institute

  • European Mobile and Mobility Alliance

  • Open Europe

M&A and Risk Management | Regulation

  • Thomson Mergers & Acquisitions

  • MergerStat

  • Profound

  • DDAR

  • ISS Corporate Governance

  • BoardEx

  • Board Analyst

  • Securities Mosaic

  • Varonis

  • International Tax and Business Guides

  • CoreCompensation

  • CCH Research Network

...
Forecast methodology

The future outlook “forecast” is based on a set of statistical methods such as regression analysis, industry specific drivers as well as analyst evaluations, as well as analysis of the trends that influence economic outcomes and business decision making.
The Global Economic Model is covering the political environment, the macroeconomic environment, market opportunities, policy towards free enterprise and competition, policy towards foreign investment, foreign trade and exchange controls, taxes, financing, the labour market and infrastructure. We aim update our market forecast to include the latest market developments and trends.

Forecasts, Data modelling and indicator normalisation

Review of independent forecasts for the main macroeconomic variables by the following organizations provide a holistic overview of the range of alternative opinions:

  • Cambridge Econometrics (CE)

  • The Centre for Economic and Business Research (CEBR)

  • Experian Economics (EE)

  • Oxford Economics (OE)

As a result, the reported forecasts derive from different forecasters and may not represent the view of any one forecaster over the whole of the forecast period. These projections provide an indication of what is, in our view most likely to happen, not what it will definitely happen.

Short- and medium-term forecasts are based on a “demand-side” forecasting framework, under the assumption that supply adjusts to meet demand either directly through changes in output or through the depletion of inventories.
Long-term projections rely on a supply-side framework, in which output is determined by the availability of labour and capital equipment and the growth in productivity.
Long-term growth prospects, are impacted by factors including the workforce capabilities, the openness of the economy to trade, the legal framework, fiscal policy, the degree of government regulation.

Direct contribution to GDP
The method for calculating the direct contribution of an industry to GDP, is to measure its ‘gross value added’ (GVA); that is, to calculate the difference between the industry’s total pre­tax revenue and its total bought­in costs (costs excluding wages and salaries).

Forecasts of GDP growth: GDP = CN+IN+GS+NEX

GDP growth estimates take into account:

  • Consumption, expressed as a function of income, wealth, prices and interest rates;

  • Investment as a function of the return on capital and changes in capacity utilization; Government spending as a function of intervention initiatives and state of the economy;

  • Net exports as a function of global economic conditions.

CLICK BELOW TO LEARN MORE
...

Market Quantification
All relevant markets are quantified utilizing revenue figures for the forecast period. The Compound Annual Growth Rate (CAGR) within each segment is used to measure growth and to extrapolate data when figures are not publicly available.

Revenues

Our market segments reflect major categories and subcategories of the global market, followed by an analysis of statistical data covering national spending and international trade relations and patterns. Market values reflect revenues paid by the final customer / end user to vendors and service providers either directly or through distribution channels, excluding VAT. Local currencies are converted to USD using the yearly average exchange rates of local currencies to the USD for the respective year as provided by the IMF World Economic Outlook Database.

Industry Life Cycle Market Phase

Market phase is determined using factors in the Industry Life Cycle model. The adapted market phase definitions are as follows:

  • Nascent: New market need not yet determined; growth begins increasing toward end of cycle

  • Growth: Growth trajectory picks up; high growth rates

  • Mature: Typically fewer firms than growth phase, as dominant solutions continue to capture the majority of market share and market consolidation occurs, displaying lower growth rates that are typically on par with the general economy

  • Decline: Further market consolidation, rapidly declining growth rates

...

The Global Economic Model
The Global Economic Model brings together macroeconomic and sectoral forecasts for quantifying the key relationships.

The model is a hybrid statistical model that uses macroeconomic variables and inter-industry linkages to forecast sectoral output. The model is used to forecast not just output, but prices, wages, employment and investment. The principal variables driving the industry model are the components of final demand, which directly or indirectly determine the demand facing each industry. However, other macroeconomic assumptions — in particular exchange rates, as well as world commodity prices — also enter into the equation, as well as other industry specific factors that have been or are expected to impact.

  • Vector Auto Regression (VAR) statistical models capturing the linear interdependencies among multiple time series, are best used for short-term forecasting, whereby shocks to demand will generate economic cycles that can be influenced by fiscal and monetary policy.

  • Dynamic-Stochastic Equilibrium (DSE) models replicate the behaviour of the economy by analyzing the interaction of economic variables, whereby output is determined by supply side factors, such as investment, demographics, labour participation and productivity.

  • Dynamic Econometric Error Correction (DEEC) modelling combines VAR and DSE models by estimating the speed at which a dependent variable returns to its equilibrium after a shock, as well as assessing the impact of a company, industry, new technology, regulation, or market change. DEEC modelling is best suited for forecasting.

Forecasts of GDP growth per capita based on these factors can then be combined with demographic projections to give forecasts for overall GDP growth.
Wherever possible, publicly available data from official sources are used for the latest available year. Qualitative indicators are normalised (on the basis of: Normalised x = (x - Min(x)) / (Max(x) - Min(x)) where Min(x) and Max(x) are, the lowest and highest values for any given indicator respectively) and then aggregated across categories to enable an overall comparison. The normalised value is then transformed into a positive number on a scale of 0 to 100. The weighting assigned to each indicator can be changed to reflect different assumptions about their relative importance.

CLICK BELOW TO LEARN MORE
...

The principal explanatory variable in each industry’s output equation is the Total Demand variable, encompassing exogenous macroeconomic assumptions, consumer spending and investment, and intermediate demand for goods and services by sectors of the economy for use as inputs in the production of their own goods and services.

Elasticities
Elasticity measures the response of one economic variable to a change in another economic variable, whether the good or service is demanded as an input into a final product or whether it is the final product, and provides insight into the proportional impact of different economic actions and policy decisions.
Demand elasticities measure the change in the quantity demanded of a particular good or service as a result of changes to other economic variables, such as its own price, the price of competing or complementary goods and services, income levels, taxes.
Demand elasticities can be influenced by several factors. Each of these factors, along with the specific characteristics of the product, will interact to determine its overall responsiveness of demand to changes in prices and incomes.
The individual characteristics of a good or service will have an impact, but there are also a number of general factors that will typically affect the sensitivity of demand, such as the availability of substitutes, whereby the elasticity is typically higher the greater the number of available substitutes, as consumers can easily switch between different products.
The degree of necessity. Luxury products and habit forming ones, typically have a higher elasticity.
Proportion of the budget consumed by the item. Products that consume a large portion of the consumer’s budget tend to have greater elasticity.
Elasticities tend to be greater over the long run because consumers have more time to adjust their behaviour.
Finally, if the product or service is an input into a final product then the price elasticity will depend on the price elasticity of the final product, its cost share in the production costs, and the availability of substitutes for that good or service.

Prices
Prices are also forecast using an input-output framework. Input costs have two components; labour costs are driven by wages, while intermediate costs are computed as an input-output weighted aggregate of input sectors’ prices. Employment is a function of output and real sectoral wages, that are forecast as a function of whole economy growth in wages. Investment is forecast as a function of output and aggregate level business investment.

CLICK BELOW TO LEARN MORE
...