...
...
How the Omicron response can prepare us for the next wave

...

How the Omicron response can prepare us for the next wave

Posted | Updated by Insights team:

Publication | Update:

May 2022
...

The ­­Omicron wave of SARS-CoV-2 in December 2021-February 2022 caused over 30 million new cases and hundreds of thousands of deaths, with a daily death toll greater than total deaths caused by Hurricane Katrina—many more than the Delta wave. This burden fell unequally on society, with Americans over 65 representing almost 80% of the deaths and significant racial disparities.

Our new analysis suggests that many of these cases were preventable. Using a data-driven computational model, we identify specific policy strategies that would have reduced infection rates and peak level of cases during the winter surge. These critical lessons can guide preparedness moving forward as we face a potentially even larger wave in the autumn.

The model we used to find these results, called TRACE, was developed by a team from Brookings, Washington University in St. Louis, and the University of Vermont, building on previous work that informed early-pandemic policy nationally and locally. We considered a wide variety of potential containment strategies that could have been deployed before or during the Omicron wave and used TRACE to simulate how many cases would have occurred during each of these scenarios, allowing for us to readily compare them to one another. The model includes a wide variety of policy options: both small and large increases in testing capacity; faster rollout and uptake of vaccines; faster rollout and uptake of booster doses of vaccine; small and large increases in mask wearing; increased access to and substitution of high-quality respirators over low-quality masks; and moderate or strong social distancing policies such as school closures and remote work. Each of these actions is evaluated in isolation as well as hundreds of combinations of policy responses.

Figure 1

Some of our most significant findings are:

  • Multiple alternative containment strategies would have resulted in substantially lower rates of cumulative infection and peak surge levels during the winter Omicron wave than those that were actually experienced. Although we do not directly estimate downstream effects, lower case rates translate to a reduction in deaths, reduced burden on the health care system, and fewer instances of long-term symptoms or downstream health consequences such as “long COVID” or immune-system driven disease risk in young children.
  • A significant increase in consistent usage of high-quality masks could have reduced cases by as much as two-thirds. Although masking in the United States has been politicized and efforts to increase mask usage have been controversial, our simulations demonstrate that masking remains a very effective approach to containing spread of SARS-CoV-2. In our simulations, consistent masking by 70% of Americans during the surge would have been almost as effective as widespread closures of businesses and schools.
  • A large increase in testing capacity alone could have reduced cumulative and surge infection rates by nearly one-third.
  • A higher take-up rate of booster shots and earlier availability for those eligible would have reduced cumulative infection rates by up to 15% of the U.S. population during the Omicron wave. Rapid increases in vaccination for children under 18 would also have led to large decreases in disease spread. Much higher investment in uptake of boosters and vaccines, including in the youngest age groups, would likely be needed before a wave to provide a substantial dampening effect.
  • Combinations of “lighter touch” responses (such as modest increases in mask usage combined with modest increases in testing) can be as powerful as intensive investment in a single policy approach and may be more practical.

A fall wave may be driven by a variant that looks different from Omicron, but our results can still inform policy investments that will save lives.

In addition to looking at the “policy counterfactuals” above (policy choices that could have been made but were not), we also used TRACE to look at “epidemiological counterfactuals” that represent how the wave might have played out if a variant even more contagious than Omicron (or one better able to evade immunity) had become dominant. Our key finding from this analysis is that, although all containment policies are less effective in absolute terms against a highly contagious or high immune-escape variants, their relative impact compared to one another is largely invariant—that is, the choice of which policies to invest in for maximum preparedness remains nearly the same. A fall wave may be driven by a variant that looks different from Omicron, but our results can still inform policy investments that will save lives.

At a time when policy focus and public attention have largely shifted away from COVID, these new results show how big a difference policy choices and preparedness investments can make.  Both the analysis above and our previous work with TRACE underscore the contributions that policy simulations can continue to make to identifying robust and practical policy solutions in the face of uncertainty and rapidly changing dynamics on the ground. Models which consider a broad range of policy choices and can simulate impact across diverse interacting populations are also particularly well suited to providing guidance with respect to long-term impacts, equity implications, and linkages to health care or economic systems, as we are doing in our continued work with TRACE.


The Brookings Institution is financed through the support of a diverse array of foundations, corporations, governments, individuals, as well as an endowment. A list of donors can be found in our annual reports published online here. The findings, interpretations, and conclusions in this report are solely those of its author(s) and are not influenced by any donation.

...
Framed Content Aggregator - Publisher | Sponsor
...
BROOKINGS INSTITUTION

The Brookings Institution is a nonprofit public policy organization based in Washington, DC. Brooking's mission is to conduct in-depth research that leads to new ideas for solving problems facing society at the local, national and global level. https://www.brookings.edu

SKU code : 2F5E1C9C-5501-32F5-FBA9-35116F506A21
Delivery Format:
HTML ...

Immediate Delivery
...Access Rights | Content Availability:
...

...

The content of this subscriber knowledge library area, the technology platform and tools are provided for information purposes only. No legal liability or other responsibility is accepted for any errors, omissions, or any loss, damage or inconvenience caused as a result of reliance on such information, or statements on this site, or any site to which these pages connect, since we cannot control the content or take responsibility for pages maintained by external providers. Where we provide links to sites, we do not by doing so endorse any information or opinions appearing in them. This courseware includes resources copyrighted and open educational resources (OER) by multiple individuals and organizations. If someone else is given access to your account login information, that person has read, understands and accepts the Conditions of Use for this platform.

...

Objectives and Study Scope

This study has assimilated knowledge and insight from business and subject-matter experts, and from a broad spectrum of market initiatives. Building on this research, the objectives of this market research report is to provide actionable intelligence on opportunities alongside the market size of various segments, as well as fact-based information on key factors influencing the market- growth drivers, industry-specific challenges and other critical issues in terms of detailed analysis and impact.

The report in its entirety provides a comprehensive overview of the current global condition, as well as notable opportunities and challenges. The analysis reflects market size, latest trends, growth drivers, threats, opportunities, as well as key market segments. The study addresses market dynamics in several geographic segments along with market analysis for the current market environment and future scenario over the forecast period. The report also segments the market into various categories based on the product, end user, application, type, and region.
The report also studies various growth drivers and restraints impacting the  market, plus a comprehensive market and vendor landscape in addition to a SWOT analysis of the key players.  This analysis also examines the competitive landscape within each market. Market factors are assessed by examining barriers to entry and market opportunities. Strategies adopted by key players including recent developments, new product launches, merger and acquisitions, and other insightful updates are provided.

Research Process & Methodology

...

We leverage extensive primary research, our contact database, knowledge of companies and industry relationships, patent and academic journal searches, and Institutes and University associate links to frame a strong visibility in the markets and technologies we cover.

We draw on available data sources and methods to profile developments. We use computerised data mining methods and analytical techniques, including cluster and regression modelling, to identify patterns from publicly available online information on enterprise web sites.
Historical, qualitative and quantitative information is obtained principally from confidential and proprietary sources, professional network, annual reports, investor relationship presentations, and expert interviews, about key factors, such as recent trends in industry performance and identify factors underlying those trends - drivers, restraints, opportunities, and challenges influencing the growth of the market, for both, the supply and demand sides.
In addition to our own desk research, various secondary sources, such as Hoovers, Dun & Bradstreet, Bloomberg BusinessWeek, Statista, are referred to identify key players in the industry, supply chain and market size, percentage shares, splits, and breakdowns into segments and subsegments with respect to individual growth trends, prospects, and contribution to the total market.

Research Portfolio Sources:

  • BBC Monitoring

  • BMI Research: Company Reports, Industry Reports, Special Reports, Industry Forecast Scenario

  • CIMB: Company Reports, Daily Market News, Economic Reports, Industry Reports, Strategy Reports, and Yearbooks

  • Dun & Bradstreet: Country Reports, Country Riskline Reports, Economic Indicators 5yr Forecast, and Industry Reports

  • EMIS: EMIS Insight and EMIS Dealwatch

  • Enerdata: Energy Data Set, Energy Market Report, Energy Prices, LNG Trade Data and World Refineries Data

  • Euromoney: China Law and Practice, Emerging Markets, International Tax Review, Latin Finance, Managing Intellectual Property, Petroleum Economist, Project Finance, and Euromoney Magazine

  • Euromonitor International: Industry Capsules, Local Company Profiles, Sector Capsules

  • Fitch Ratings: Criteria Reports, Outlook Report, Presale Report, Press Releases, Special Reports, Transition Default Study Report

  • FocusEconomics: Consensus Forecast Country Reports

  • Ken Research: Industry Reports, Regional Industry Reports and Global Industry Reports

  • MarketLine: Company Profiles and Industry Profiles

  • OECD: Economic Outlook, Economic Surveys, Energy Prices and Taxes, Main Economic Indicators, Main Science and Technology Indicators, National Accounts, Quarterly International Trade Statistics

  • Oxford Economics: Global Industry Forecasts, Country Economic Forecasts, Industry Forecast Data, and Monthly Industry Briefings

  • Progressive Digital Media: Industry Snapshots, News, Company Profiles, Energy Business Review

  • Project Syndicate: News Commentary

  • Technavio: Global Market Assessment Reports, Regional Market Assessment Reports, and Market Assessment Country Reports

  • The Economist Intelligence Unit: Country Summaries, Industry Briefings, Industry Reports and Industry Statistics

Global Business Reviews, Research Papers, Commentary & Strategy Reports

  • World Bank

  • World Trade Organization

  • The Financial Times

  • The Wall Street Journal

  • The Wall Street Transcript

  • Bloomberg

  • Standard & Poor’s Industry Surveys

  • Thomson Research

  • Thomson Street Events

  • Reuter 3000 Xtra

  • OneSource Business

  • Hoover’s

  • MGI

  • LSE

  • MIT

  • ERA

  • BBVA

  • IDC

  • IdExec

  • Moody’s

  • Factiva

  • Forrester Research

  • Computer Economics

  • Voice and Data

  • SIA / SSIR

  • Kiplinger Forecasts

  • Dialog PRO

  • LexisNexis

  • ISI Emerging Markets

  • McKinsey

  • Deloitte

  • Oliver Wyman

  • Faulkner Information Services

  • Accenture

  • Ipsos

  • Mintel

  • Statista

  • Bureau van Dijk’s Amadeus

  • EY

  • PwC

  • Berg Insight

  • ABI research

  • Pyramid Research

  • Gartner Group

  • Juniper Research

  • MarketsandMarkets

  • GSA

  • Frost and Sullivan Analysis

  • McKinsey Global Institute

  • European Mobile and Mobility Alliance

  • Open Europe

M&A and Risk Management | Regulation

  • Thomson Mergers & Acquisitions

  • MergerStat

  • Profound

  • DDAR

  • ISS Corporate Governance

  • BoardEx

  • Board Analyst

  • Securities Mosaic

  • Varonis

  • International Tax and Business Guides

  • CoreCompensation

  • CCH Research Network

...
Forecast methodology

The future outlook “forecast” is based on a set of statistical methods such as regression analysis, industry specific drivers as well as analyst evaluations, as well as analysis of the trends that influence economic outcomes and business decision making.
The Global Economic Model is covering the political environment, the macroeconomic environment, market opportunities, policy towards free enterprise and competition, policy towards foreign investment, foreign trade and exchange controls, taxes, financing, the labour market and infrastructure. We aim update our market forecast to include the latest market developments and trends.

Forecasts, Data modelling and indicator normalisation

Review of independent forecasts for the main macroeconomic variables by the following organizations provide a holistic overview of the range of alternative opinions:

  • Cambridge Econometrics (CE)

  • The Centre for Economic and Business Research (CEBR)

  • Experian Economics (EE)

  • Oxford Economics (OE)

As a result, the reported forecasts derive from different forecasters and may not represent the view of any one forecaster over the whole of the forecast period. These projections provide an indication of what is, in our view most likely to happen, not what it will definitely happen.

Short- and medium-term forecasts are based on a “demand-side” forecasting framework, under the assumption that supply adjusts to meet demand either directly through changes in output or through the depletion of inventories.
Long-term projections rely on a supply-side framework, in which output is determined by the availability of labour and capital equipment and the growth in productivity.
Long-term growth prospects, are impacted by factors including the workforce capabilities, the openness of the economy to trade, the legal framework, fiscal policy, the degree of government regulation.

Direct contribution to GDP
The method for calculating the direct contribution of an industry to GDP, is to measure its ‘gross value added’ (GVA); that is, to calculate the difference between the industry’s total pre­tax revenue and its total bought­in costs (costs excluding wages and salaries).

Forecasts of GDP growth: GDP = CN+IN+GS+NEX

GDP growth estimates take into account:

  • Consumption, expressed as a function of income, wealth, prices and interest rates;

  • Investment as a function of the return on capital and changes in capacity utilization; Government spending as a function of intervention initiatives and state of the economy;

  • Net exports as a function of global economic conditions.

CLICK BELOW TO LEARN MORE
...

Market Quantification
All relevant markets are quantified utilizing revenue figures for the forecast period. The Compound Annual Growth Rate (CAGR) within each segment is used to measure growth and to extrapolate data when figures are not publicly available.

Revenues

Our market segments reflect major categories and subcategories of the global market, followed by an analysis of statistical data covering national spending and international trade relations and patterns. Market values reflect revenues paid by the final customer / end user to vendors and service providers either directly or through distribution channels, excluding VAT. Local currencies are converted to USD using the yearly average exchange rates of local currencies to the USD for the respective year as provided by the IMF World Economic Outlook Database.

Industry Life Cycle Market Phase

Market phase is determined using factors in the Industry Life Cycle model. The adapted market phase definitions are as follows:

  • Nascent: New market need not yet determined; growth begins increasing toward end of cycle

  • Growth: Growth trajectory picks up; high growth rates

  • Mature: Typically fewer firms than growth phase, as dominant solutions continue to capture the majority of market share and market consolidation occurs, displaying lower growth rates that are typically on par with the general economy

  • Decline: Further market consolidation, rapidly declining growth rates

...

The Global Economic Model
The Global Economic Model brings together macroeconomic and sectoral forecasts for quantifying the key relationships.

The model is a hybrid statistical model that uses macroeconomic variables and inter-industry linkages to forecast sectoral output. The model is used to forecast not just output, but prices, wages, employment and investment. The principal variables driving the industry model are the components of final demand, which directly or indirectly determine the demand facing each industry. However, other macroeconomic assumptions — in particular exchange rates, as well as world commodity prices — also enter into the equation, as well as other industry specific factors that have been or are expected to impact.

  • Vector Auto Regression (VAR) statistical models capturing the linear interdependencies among multiple time series, are best used for short-term forecasting, whereby shocks to demand will generate economic cycles that can be influenced by fiscal and monetary policy.

  • Dynamic-Stochastic Equilibrium (DSE) models replicate the behaviour of the economy by analyzing the interaction of economic variables, whereby output is determined by supply side factors, such as investment, demographics, labour participation and productivity.

  • Dynamic Econometric Error Correction (DEEC) modelling combines VAR and DSE models by estimating the speed at which a dependent variable returns to its equilibrium after a shock, as well as assessing the impact of a company, industry, new technology, regulation, or market change. DEEC modelling is best suited for forecasting.

Forecasts of GDP growth per capita based on these factors can then be combined with demographic projections to give forecasts for overall GDP growth.
Wherever possible, publicly available data from official sources are used for the latest available year. Qualitative indicators are normalised (on the basis of: Normalised x = (x - Min(x)) / (Max(x) - Min(x)) where Min(x) and Max(x) are, the lowest and highest values for any given indicator respectively) and then aggregated across categories to enable an overall comparison. The normalised value is then transformed into a positive number on a scale of 0 to 100. The weighting assigned to each indicator can be changed to reflect different assumptions about their relative importance.

CLICK BELOW TO LEARN MORE
...

The principal explanatory variable in each industry’s output equation is the Total Demand variable, encompassing exogenous macroeconomic assumptions, consumer spending and investment, and intermediate demand for goods and services by sectors of the economy for use as inputs in the production of their own goods and services.

Elasticities
Elasticity measures the response of one economic variable to a change in another economic variable, whether the good or service is demanded as an input into a final product or whether it is the final product, and provides insight into the proportional impact of different economic actions and policy decisions.
Demand elasticities measure the change in the quantity demanded of a particular good or service as a result of changes to other economic variables, such as its own price, the price of competing or complementary goods and services, income levels, taxes.
Demand elasticities can be influenced by several factors. Each of these factors, along with the specific characteristics of the product, will interact to determine its overall responsiveness of demand to changes in prices and incomes.
The individual characteristics of a good or service will have an impact, but there are also a number of general factors that will typically affect the sensitivity of demand, such as the availability of substitutes, whereby the elasticity is typically higher the greater the number of available substitutes, as consumers can easily switch between different products.
The degree of necessity. Luxury products and habit forming ones, typically have a higher elasticity.
Proportion of the budget consumed by the item. Products that consume a large portion of the consumer’s budget tend to have greater elasticity.
Elasticities tend to be greater over the long run because consumers have more time to adjust their behaviour.
Finally, if the product or service is an input into a final product then the price elasticity will depend on the price elasticity of the final product, its cost share in the production costs, and the availability of substitutes for that good or service.

Prices
Prices are also forecast using an input-output framework. Input costs have two components; labour costs are driven by wages, while intermediate costs are computed as an input-output weighted aggregate of input sectors’ prices. Employment is a function of output and real sectoral wages, that are forecast as a function of whole economy growth in wages. Investment is forecast as a function of output and aggregate level business investment.

CLICK BELOW TO LEARN MORE
...